A.D.M. COLLEGE FOR WOMEN

(AUTONOMOUS)

Nationally Accredited with "A" Grade by NAAC - 3rd Cycle (Affiliated to Bharathidasan University, Thiruchirappalli) No.1, College Road, Velippalayam, Nagapattinam – 611 001, Tamil Nadu, India

PG & RESEARCH DEPARTMENT OF MATHEMATICS

(for the candidates admitted from the academic year 2021-2024)

ALLIED MATHEMATICS

SYLLABUS

2021-2024

Allied Mathematics 2021- 2024 Batch

SCHEME OF THE PROGRAMME

S.No Sem.		Class	Subject code	Title	Inst. Hours	Credit	Exam hours	Ma	rks	Total marks
					110015		nours	CIA	SE	mai K5
1		I.B.Sc (C.S), I.B.C.A	KUMA1/ MUAP1	Algebra and Calculus	6	3	3	25	75	100
2	I	I.B.Sc(Chemistry), I.B.Sc(Physics), I.B.Sc(Geology)	MUA1	Algebra, Analytical Geometry (3D) and Trigonometry	4	3	3	25	75	100
3		I.B.Sc(Chemistry), I.B.Sc(Physics), I.B.Sc(Geology)	MUA2	Calculus and Fourier Series	6	4	3	25	75	100
4		I.B.Sc (C.S)	MUAP2	Operations Research	4	3	3	25	75	100
5	Ш	I.B.C.A, I B.Sc(CS)	KUMA3/ MUAP3	Numerical Methods and Statistics	4	3	3	25	75	100
6		I.B.Sc(Physics), I B.Sc(Geology), I B.Sc(Chemistry)	MUA3	Differential equations and Transforms	4	3	3	25	75	100
7	III	II B.C.A	BKA4	Operations Research	6	3	3	25	75	100

Semester-I AC I	ALGEBRA AND CALCULUS	Course Code: MUAP1/ KUMA1
Instruction Hours: 6	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

	K1 -Recalling			
	K1 - Kccannig K2 - Understanding			
Cognitive	K2 - Onderstanding K3 - Applying			
Level	K4 - Analyzing			
	K5 - Evaluating			
	K6 - Creating			
Course	• To train the students to solve the problems in Theory of ec	mations		
Objectives:	 To understand the matrices 	luutions.		
9				
	• To interpret differentiation and partial differentiation.			
	• To learn the basic concepts of integration.			
	To gain the knowledge about second order differential equ			
UNIT	CONTENT	HOURS		
Unit I	THEORY OF EQUATIONS	18 Hours		
	Relation between roots and coefficients –			
	transformations of equations - diminishing, increasing and			
	multiplying the roots by a constant – forming equations with the			
	given roots – Descartes' rule of sign (Statement only) simple			
	problems.			
TT •4 TT	Chapter 6 : Sec 11,15,17,18,24	10 11		
Unit II	MATRICES	18 Hours		
	Singular matrices – inverse of a non singular matrix using Adjoint method – rank of a matrix- characteristic equation,			
	Eigen value, Eigen vectors – Cayley Hamilton theorem (proof			
	not needed) simple applications only.			
	Chapter 2 :Sec 7, 8, 11, 12, 13, 16			
Unit III	DIFFERENTIATION	18 Hours		
	Maxima and Minima-concavity ,Convexity- Points of	10 110015		
	inflexion – Partial Differentiations- Euler's theorem- Total			
	differential coefficients (proof not needed) simple problems only			
	· · · · · · · · · · · · · · · · · · ·			
	Chapter 5 : Sec 26, 27 and Chapter 6 :Sec 28.1 - 28.6			
Unit IV	INTEGRATION	18 Hours		
	Evaluation of integrals of types			
	1). $\int \frac{px+q}{ax^2+bx+c} dx = 2$). $\int \frac{px+q}{\sqrt{ax^2+bx+c}} = 3$). $\int \frac{dx}{a+bsinx} dx = 2$			
	4). $\int \frac{dx}{a+bcosx}$			
	Evaluation using integration by parts- properties of definite			
	integrals – Fourier series in the range $(0, 2\pi)$ – Odd & even			
	functions- Fourier Half range Sine & Cosine series.			
	Chapter 8 :Sec 34.1 - 34.6			
Unit V	DIFFERENTIAL EQUATION	18 Hours		
	Variable separable – Linear equation – second order of			
	types $(aD^2+bD+c)y=F(X)$ where a ,b ,c are constants and $F(X)$			
	is one of the following types (i) e^{kx} (ii)sin(kx) or cos(kx) (iii) X^n ,			
	n being an integer $(iv)e^{kx}f(x)$.			
	Chapter 8 :Sec 2.1, 2.4and Chapter 9 :Sec 1			

Text Books:

- 1. T.K.Manichavasagam Pillay and S.Narayanan , Algebra volume I , S.V. Publication, Revised Edition, 1985.
- 2. T.K. Manichavasagam Pillay and S.Narayanan , Algebra volume II,S.V. Publication, Revised Edition, 1985.
- 3. S. Narayanan, T. K. Manichavasagam Pillay, Calculus volume I,S. Viswanathan Pvt Ltd, 2003.
- 4. S. Narayanan, T. K. Manichavasagam Pillay, Calculus volume II,S. Viswanathan Pvt Ltd, 2003.

Reference Books:

M.L.Kanna algebra, Jai prakashNath& come, 1974.
 Shanti Narayan, Differential & Integral Calculus, 10th Revised Edition, S.Chand& Co. Ltd, 1962.

Web- Resources:

- <u>http://www.gacariyalur.ac.in/econtent/maths/ug/UG-I-16SACMA1-Allied-Mathematics.pdf</u>
- <u>https://www.google.com/search?client=firefox-b-</u> <u>d&q=%E2%80%A2+https%3A%2F%2Fwww.sakshieducation.com%2FEngg%2FEnggAcad</u> <u>emia%2FCommonSubjects%2FMathMethods-Fourier_Series.pdf</u>++

Course Outcomes:

CO 1:	to understand theory of equations
CO 2:	tofind eigen values and eigen vectors.
CO 3:	tofind maxima and minima of a given function.
CO 4:	to evaluate Fourier series
CO 5:	tosolve differential equation of second order.

Semester-I AC I	ALGEBRA, ANALYTICAL GEOMETRY OF 3D AND TRIGONOMETRY	Course Code: MUA1
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

	V1 Decolling	
	K1 -Recalling K2 -Understanding	
Cognitive	K3 -Applying	
Level	K4 - Analyzing	
	K5 - Evaluating	
	K6 - Creating	
Course	• To gain the knowledge about the summation of series	
Objectives:	• To find inverse of a matrix using Cayley Hamilton theorem.	
	• To understand straight line and sphere	
	• To know the expansion of $\sin n\theta$, cosine $n\theta$	
	• To aquire the knowledge about hyperbolic and inverse hyperbolic	olic functions.
UNIT	CONTENT	HOURS
Unit I	BINOMIAL, EXPONENTIAL AND LOGARITHMIC	
	SERIES.	12 Hours
	Binomial, Exponential and logarithmic series (formulae only) -	
	Summation and approximation related problems only.	
	Chapter: 3, 4 & 5	
Unit II	MATRICES	
	Eigen values and Eigen Vectors - Verifications of Cayley	12 Hours
	– Hamilton's Theorem – Simple Problems.	
	Chapter 2: Sec 16.1-16.3	
Unit III	THE RIGHT LINE AND THE SPHERE	12 Hours
	Right line – Coplanar lines – conditions for the	
	coplanarity of lines - Number of arbitrary constants in the	
	equations of the straight line - the shortest distance between the	
	two lines – Spheres – Definitions – the sphere through four	
	given points – Equations of a circle.	
	Chapter 3: Sec 3.1,3.4-3.6, Chapter 6: Sec 6.11-6.13 & 6.4	
Unit IV	EXPANSION OF TRIGONOMETRIC FUNCTIONS	12 Hours
	Expansion of Sin θ , Cos $n\theta$ and tan $n\theta$, $sin^n\theta$, $cos^n\theta$	
	$sin^n\theta cos^m\theta$ - Simple problems.	
	Chapter 3: Sec 1,2,4,4.1	
Unit V	HYPERBOLIC FUNCTIONS	12 Hours
	Hyperbolic functions – Relations between hyperbolic functions	
	and circular Trigonometry functions-Inverse hyperbolic	
	functions – Simple problems.	

Text Books:

- 1. T.K. Manickavasagam Pillai and S. Narayanan ,Algebra Volume IS.Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 1985.
- 2. Analytical geometry 3D and Vector Calculus, Arumugam and issac, edition 2017.
- 3. T.K. ManickavasagamPillai and S.Narayanan, "Trigonometry" S.Viswanathan Printersand Publishers Pvt. Ltd., Chennai.
- 4. T.K. Manichavasagam Pillay and S.Narayanan , Algebra volume II, S.V. Publication, Revised Edition, 1985.

Reference Books:

- 1. M.L. Khanna., Algebra, Edition 4, Jai Prakash Nath Publications, 1957.
- 2. S.Arumugam and ThangaPandiIssac, Trignometry and Fourier series, New gamma Publications, 1999.

Web- Resources:

- http://www.gacariyalur.ac.in/econtent/maths/ug/UG-I-16SACMA1-Allied-Mathematics.pdf
- <u>https://www.google.com/search?client=firefox-b-</u> <u>d&q=%E2%80%A2+https%3A%2F%2Fwww.sakshieducation.com%2FEngg%2FEnggAcad</u> <u>emia%2FCommonSubjects%2FMathMethods-Fourier_Series.pdf</u>++

Course Outcomes:

CO 1:	to know the relation between binomial exponential and summation of series.
CO 2:	to analysis and evaluate the eigen values and eigen vectors.
CO 3:	to recognize three dimensional shapes in the world around them
CO 4:	to finding trigonometric functions using definition and identities.
CO 5:	to apply the formulas for derivatives and integrals of the hyperbolic and inverse hyperbolic functions

Semester-II AC II	OPERATIONS RESEARCH	Course Code: MUAP2
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

	K1 -Recalling	
	K2 -Understanding	
Cognitive	K3 - Applying	
Level	K4 - Analyzing	
	K5 - Evaluating	
	K6 - Creating	
Course	• To find the solution of the LPP using graphical method	
Objectives:	• To understand different types of LPP	
	• To solve transportation problem using various methods.	
	• To train the students to solve the sequencing problem.	
	 To explore the concepts of Network analysis. 	
UNIT	CONTENT	HOURS
Unit I	LPP-GRAPHICAL SOLUTION METHOD	12 Hours
	Operations Research : Introduction – Nature and	
	Characteristic features of OR- OR and decision making -	
	Linear programming formulations and graphical solution of two	
	variables- Canonical and Standard forms of LPP.	
	Chapter 1 :Sec 1.1,1.2,1.7 and Chapter 2 :Sec 2.1 - 2.2	
Unit II	LPP-SIMPLEX METHOD	12 Hours
	Simplex method : Simplex method for <,=,> constraints	
	- Charner's method of penalties - Two phase simplex method .	
	Chapter 3 : Sec 3.1,3.3,3.5	
Unit III	TRANSPORTATION PROBLEMS	12 Hours
	Mathematical formulation of the problem – Degeneracy	
	Transportation problem – Transportation Algorithm – Unbalanced Transportation Problem- Assignment algorithm –	
	Unbalanced Assignment problems.	
	Chapter 6 :Sec 6.1,6.2,6.5,6.7 to 6.9	
Unit IV	SEQUENCING PROBLEMS	12 Hours
	Processing of n jobs through two machines – Processing	12 110015
	of n jobs and k machines – Processing of 2 jobs and through m	
	machines.	
	Chapter 10 :Sec 10.1 - 10.5	
Unit V	NETWORK SCHEDULING BY PERT/CPM	12 Hours
	Network – Rules of Network construction – Time	
	calculations in Networks – CPM computation – PERT	
	computation.	
	Chapter 21 :Sec 21.1 - 21.7	

Text Book:

1. KantiSwarup, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand and Sons, Educational Publishers, New Delhi, 2002.

Reference Books:

V. Sundaresan, K. Ganesan, Resource Management Techniques, A.R. Publications, 2002.
 J.K.Sharma, Operations Research Theory and Applications, Macmillan India Ltd, 3rd edition, 2006.

Web- Resources:

- https://stemez.com/subjects/science/1HOperationsReseach/1HOperationsReseach.php
- https://www.acsce.edu.in>15...PDF
- https://web.stanford.edu>notesPDF

Course Outcomes:

CO 1:	toformulate the given simplified description of asuitable real work problem as a linear programming models in general, standard and canonical forms.
CO 2:	tointerpret different types of LPP.
CO 3:	to solve transportation and assignment problems
CO 4:	to understand the sequencing problem
CO 5:	to aquire the knowledge about network analysis.

Semester-II	CALCULUS AND FOURIER SERIES	Course Code: MUA2
AC II		
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives:	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating • To differentiate the given functions using Leibnitz's the To introduce the notion of curvature, radius of curvature Jacobians. • To integrate simply by changing the order of the given • To acquire the knowledge of solving definite integrals • To gain the knowledge of Fourier series.	are and nintegration.
UNIT	CONTENT	HOURS
Unit I	DIFFERENTIATIONDifferentiation- The nth derivative of standardfunctions-Leibnitz's Theorem for nth derivative of a product offunctions (Statement Only) –Simple Problems.Chapter 1 & 2	18Hours
Unit II	CURVES Curvature– Radius of curvature in Cartesian only -Total Differential Coefficients-Jacobians of two and three variables– Simple Problems. Chapter 10 : Sec 2.1 – 2.4, Chapter 8 : Sec 1.3	18Hours
Unit III	INTEGRATION Integration :Double integrals–Surface area –Changing the order of Integration–Triple Integrals. Chapter 5 :Sec 2.1,2.2,4	18Hours
Unit IV	DEFINITE INTEGRALS General properties of definite integrals – Evaluation of definite integrals of types 1). $\int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}}$ 2). $\int_{a}^{b} \sqrt{(x-a)(b-x)} dx$ 3). $\int_{a}^{b} \sqrt{\frac{x-a}{b-x}} dx$ Reduction formula (where n is a positive integer) for 1). $\int_{a}^{b} e^{ax} x^{n} dx$ 2). $\int_{a}^{b} sin^{n} x dx$ 3). $\int_{a}^{b} cos^{n} x dx$ 4). $\int_{0}^{x} e^{ax} x^{n} dx$ 5). $\int_{a}^{\frac{\pi}{2}} sin^{n} x dx$ 6). Without proof $\int_{a}^{\frac{\pi}{2}} sin^{n} x cos^{m} x dx$ - and illustrations. Chapter 1 : Sec 11,13	18Hours
Unit V	Complete 11: See	18Hours

Text Book:

1.T.K. Manickavasagam Pillai and S.NarayananCalculusVol -I, S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 2011.

2. T.K.Manickavasagam Pillai and S.Narayanan Calculus vol –III, S.Viswanathan Printers and Publishers Pvt.Ltd., Chennai, 2011.

Reference Books:

- 1. S.Arumugam, Calculus, New Gamma Publishing House, Palayamkottai, 2001.
- 2. An Introduction to Laplace Transforms and Fourier Series ,April 2014 by Phil Dyke

Web- Resources:

- http://www.gacariyalur.ac.in/econtent/maths/ug/UG-I-Allied-Maths-Calculus.pdf
- <u>https://www.sakshieducation.com/Engg/EnggAcademia/CommonSubjects/MathMethods-Fourier_Series.pdf</u>

Course Outcomes:

CO 1:	tocalculatethenthderivativesofthefunction
CO 2:	to sketch curves in Cartesian coordinate systems.
CO 3:	to apply the reduction formulae for finding integration.
CO 4:	to find the area by changing the given order of integration.
CO 5:	to calculate the Fourier coefficients

Semester-II AC III	DIFFERENTIAL EQUATIONS AND TRANSFORMS	Course Code: MUA3
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives:	 K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating To study the concepts of linear equations. To study the basic concepts of partial differential equations. To understand the concepts of Laplace Transform. To find the inverse Laplace transform of the given functions. 		
UNIT	To gain the knowledge of vectors CONTENT	HOURS	
UNII Unit I	LINEAR EQUATIONS WITH CONSTANT	12Hours	
	COEFFICIENTS		
	Linear equations with constant coefficients –Evaluation of		
	particular integral of x^k where k is a positive integerande ^{ax} f(x),		
	where $f(x)$ is any function of x-second order linear equations		
	with variable coefficients –Simple Problems.		
	Chapter V : Sec 1-5		
Unit II	PARTIAL DIFFERENTIAL EQUATIONS	12Hours	
	Partial differential Equations -Formation of equations		
	by elimination of constants and arbitrary functions- Definition of		
	General, Particular, Complete and singular integral (Geometrical		
	meaning not expected) - Lagrange's method of solving the		
	linear equations (Pp+Qq=R) –Simple Problems - Solutions of		
	first order equations of the standard forms $F(p,q)=0$, $F(x,p,q)=0$,		
	F(y,p,q)=0, $F(z,p,q)=0$, $F(x,p)=F(y,q)$ -Clairaut's form –Simple		
	Problems.		
	Chapter XII : Sec1-5		
Unit III	LAPLACE TRANSFORM	12Hours	
	Definition – Laplace transform of functions e ^{at} , cosat,		
	sinat, t ⁿ where n is a positive integer –Shifting theorems –Laplace		
	transform of $e^{-at}f(t)$ –Laplace transform of e^{-at} cosbt, e^{-at} sinbt and		
	$e^{-at}f(t)$ – Laplace transform of $\dot{f}(t)$ and $\dot{f}(t)$ –Simple Problems.		

	Chapter IX :Sec 1 -5	
Unit IV	 INVERSE LAPLACE TRANSFORM Inverse transform of standard forms –Application to the solution of ordinary differential equations with constant coefficient involving the above transformations –Simple Problems. Chapter IX: Sec 6-11 	12Hours
Unit V	GRADIENT AND CURL OF A VECTOR	12Hours
	Gradient of a vector – Directional derivative – Unit normal	
	vector - tangent plane - Divergence - Curl - solenoid	
	&irrotaional vectors- Double Operators - Properties connecting	
	grad., div., and curl of a vector.	
	Chapter 4: Sec 4 – 12	

Text Books:

- 1. T.K.Manickavachagam Pillai and S.Narayanan, Differential Equations, S.Viswanathan Printers and Publishers Pvt.Ltd., Chennai, 1996.
- 2. T.K.Manickavachagam Pillai and S.Narayanan, Vector Algebra and Analysis, S.Viswanathan Printers and Publishers Pvt.Ltd., Chennai

Reference Books:

- 1. M.L.Khanna, Differential equations, Jai Prakash Nath& Co,Meerut, 14thEdition.
- 2. M.K.Venkatraman, Engineering Mathematics (Volume II), National Publication & Co 1983.

Web-Resources:

- https://www.math.ust.hk/~machas/differential-equations.pdf
- https://web.stanford.edu/~boyd/ee102/laplace.pdf

Course Outcomes:

CO 1:	to solve the linear differential equations
CO 2:	to find the complete solution of partial differential equations.
CO 3:	to find the Laplace transform of the given functions
CO 4:	to solve the ordinary differential equations using inverse Laplace transform.
CO 5:	to make the students gain wide knowledge in vectors

Semester-II AC III	Numerical Methods and Statistics	Course Code: MUAP3/ KUMA3
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cogniti ve Level Course Objectives:	rel K3 - Applying K4 - Analyzing K5 - Evaluating K6 - Creating • To study the numerical methods for solving thr algebraic and transcendental equations • To learn about numerical differentiation and integration.	
	To find the solutions of ordinary differential equations.To gain the knowledge about the mean and variance.	
UNIT	To understand the correlations and regression. CONTENT	HOU RS
Unit I	SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Bisection method, Iteration method,Newton-Raphson method - Finite differences - Forward, backward differences- Newton's Forward, Backward Interpolation formula .Lagrange's interpolation Polynomial . Chapter 2: Sections 2.1-2.5, Chapter 3: 3.1,3.2,3.6,3.9.1	12 Hours
Unit II	NUMERICAL DIFFERENTIATION AND INTEGRATION Trapezoidal rule- Simpson's 1/3 and 3/8 rule.(proof not needed)-Solution of linear system –Direct method- Gauss Elimination method- Solution of linear system-Iterative methods-Gauss Jacobi's and Gauss Seidal methods of iteration. Chapter-5:Sections 5.1,5.2,5.4,5.4.1,5.4.2,5.4.3,Chapter 6: Sec- 6.3.2,6.4	12 Hours
Unit III	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Solution by Taylor's series- Euler's Method- Modified Euler's method- RungeKutta Second and Fourth order methods. Chapter 7: Sections 7.1,7.2,7.4,7.4.2,7.5	12 Hours
Unit IV	MEASURES OF CENTRAL TENDENCY AND DISPERSION Arithmetic Mean – Geometric mean – Harmonic mean – Median, Mode, Standard Deviation – Quartile Deviation – Percentiles – Expectation – Variance and covariance Chapter2:Sections2.5,2.6,2.6.1,2.7,2.7.1,2.8,2.9,2.13,2.13.1,2.13.2,2.1 3.4,2.14.1	12 Hours
Unit V	CORRELATIONCorrelations - Karl Pearson's coefficient of correlations -Spearman's rank correlations-Linear regression - Regressioncoefficients - Simple problems.Chapter 10: Sections 10.4,10.7,10.7.1 – 10.7.3 Chapter 11: Sections	12 Hours

11.2,11.2.1

Text Books:

- 1. S.S.Sastry, Introductory Methods of Numerical Analysis, 3rd Edition Prentice Hall of India, New Delhi, 1998.
- 2. S.C. Gupta and V.K. Kapoor,Fundamentals of Mathematical Statistics, 11thEdition SulthanChand& Sons, New Delhi, 2002.

Reference Books:

- 1. M.K.Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Private Limited, 2001.
- 2. M.K.Venkatraman, Numerical methods in Science and Engineering, National Publisher Company, Fifth Edition, 2001.

Web- Resources:

- https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
- https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression

Course Outcomes:

CO 1:	togain the knowledge about numerical methods.
CO 2:	tofind the solutions of linear system.
CO 3:	toapply numerical methods to obtain approximate solutionsto mathematical problems.
CO 4:	to understand mean and variance
CO 5:	tointerpret correlation and regression.

Semester-III AC III	OPERATIONS RESEARCH	Course Code: KUMA4
Instruction Hours: 6	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Course Objectives:

- To find the solution of the LPP using graphical method
- To understand different types of LPP
- To solve transportation problem using various methods.
- To train the students to solve the sequencing problem.
- To explore the concepts of Network analysis.

Unit I	LPP-GRAPHICAL SOLUTION METHOD Operations Research : Introduction – Nature and Characteristic features of OR- OR and decision making - Linear programming formulations and graphical solution of two variables- Canonical and Standard forms of LPP . Chapter 1 :Sec 1.1,1.2,1.7 and Chapter 2 :Sec 2.1 - 2.6	18 Hours
Unit II	 LPP-SIMPLEX METHOD Simplex method : Simplex method for <,=,> constraints – Charner's method of penalties – Two phase simplex method . Chapter 3 : Sec 3.1,3.3,3.5 	18 Hours
Unit III	TRANSPORTATION PROBLEMS Mathematical formulation of the problem – Degeneracy Transportation problem – Transportation Algorithm – Unbalanced Transportation Problem- Assignment algorithm – Unbalanced Assignment problems. Chapter 6 :Sec 6.1,6.2,6.5,6.7 to 6.9	18 Hours
Unit IV	SEQUENCING PROBLEMS Processing of n jobs through two machines – Processing of n jobs and k machines – Processing of 2 jobs and through m machines. Chapter 10 :Sec 10.1 - 10.5	18 Hours
Unit V	NETWORK SCHEDULING BY PERT/CPM Network – Rules of Network construction – Time calculations in Networks – CPM computation – PERT computation. Chapter 21 :Sec 21.1 - 21.7	18 Hours

Text Book:

1. KantiSwarup, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand and Sons, Educational Publishers, New Delhi, 2002.

Reference Books:

- 1. V. Sundaresan, K. Ganesan, Resource Managemant Techniques, A.R. Publications, 2002.
- 2. J.K.Sharma, Operations Research Theory and Applications, Macmillan India Ltd, 3rdedition, 2006

Web- Resources:

- https://stemez.com/subjects/science/1HOperationsReseach/1HOperationsReseach.php
- https://www.acsce.edu.in > 15...PDF
- https://web.stanford.edu > notesPDF

Course Outcomes:

CO 1:	toformulate the given simplified description of asuitable real work problem as a linear programming models in general, standard and canonical forms.
CO 2:	tointerpret different types of LPP.
CO 3:	to solve transportation and assignment problems
CO 4:	to understand the sequencing problem
CO 5:	toaquire the knowledge about network analysis.